
Dynamic Proofs of Retrievability from Chameleon-Hashes

Stefan Rass
Institute of Applied Informatics, Alpen-Adria Universitaet Klagenfurt,

Universitaetsstrasse 65-67, 9020 Klagenfurt, Austria

Keywords: Cloud Storage, Proofs of Retrievability, Data Availability, Security.

Abstract: Proofs of retrievability (POR) are interactive protocols that allow a verifier to check the consistent existence
and availability of data residing at a potentially untrusted storage provider, e.g., a cloud. While most POR
protocols strictly refer to static files, i.e., content that is read-only, dynamic PORs shall achieve the same
security guarantees (existence, consistency and the possibility to retrieve the data) for content that is subject
to an unlimited number of (legitimate) modifications. This work discusses how to construct such a dynamic
proof of retrievability from chameleon hashes (trapdoor commitments). Like standard POR constructions,
the presented scheme is sentinel-based and does audit queries via spot checking mechanism. Unlike previous
schemes, however, a-posteriori insertions of new sentinels throughout the lifetime of the file is supported. This
novel feature is apparently absent in any other POR scheme in the literature. Moreover, the system is designed
for compatibility with XML structured data files.

1 INTRODUCTION

Proofs of retrievability (POR) have been introduced
by (Juels and Kaliski, 2007) and (Lillibridge et al.,
2003) as a tool to verify the existence and consistency
of a remotely stored file. Having outsourced the file to
a remote storage server implies that the verifier is no
longer in possession of the actual data, yet uses a POR
to verify that the stored information is still available
and intact. The main challenge for a POR is to achieve
this much more efficiently than the trivial approach of
downloading the whole file. With the rise of cloud
computing services, especially cloud storage, PORs
have received lot of interest over the last years. Most
POR protocols are designed to work with static files,
i.e., the file structure and contents are assumed to re-
main unchanged over the lifetime of the file and any
number of POR executions. Of much more practical
interest are POR protocols that allow for changes (up-
dates) to the stored file. These have evolved into their
own line of research, calleddynamicproofs of retreiv-
ability. While the construction of static POR proto-
cols is rather straightforward, most known dynamic
POR variants are relatively complex and come with
strongly extended security models. This work shows
a construction that naturally fits dynamic proofs of re-
trievability into the same security framework that ap-
plies for static PORs.

The terminology of the POR framework is

strongly aligned to the vocabulary of interactive proof
systems: we have theverifier V , being the file owner
who has given the data to a server for storage. The
proof of retrievability is carried out between the ver-
ifier and the server, called theprover in this context.
This prover is as well the potential adversary. The
”proof” is established by specifying aknowledge ex-
traction algorithm, which unlike its abstract sibling
in the zero-knowledge paradigm, has a quite simple
physical interpretation for a POR: it is precisely the
algorithm that ”downloads” the data whose existence
has been assured a-priori by the interactive part of the
POR (challenge-response cycles).

1.1 Related Work

Besides static and dynamic POR variants, related pro-
tocols can broadly be classified intobounded-and
unbounded-use schemes, where the former allows
only a limited (large) number of verifications over the
lifetime of the file, as opposed to the latter. Bounded
use protocols are sometimes calledkeylessschemes
(e.g., (Juels and Kaliski, 2007)), where unbounded
use schemes are also known askeyed(e.g., (Shacham
and Waters, 2008; Xu and Chang, 2012), who in ad-
dition also provide protocols with public verifiabil-
ity). The work of (Paterson et al., 2012) establishes
a coding-theoretic foundation for static proofs of re-
trievability that unifies keyed and keyless schemes on

296 Rass S..
Dynamic Proofs of Retrievability from Chameleon-Hashes.
DOI: 10.5220/0004505102960304
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 296-304
ISBN: 978-989-8565-73-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

common grounds of error correcting encoding. In
fact, it is shown that under the general framework of
a challenge-response protocol which makes up part
of every POR, error-correcting codes can be defined
from a given POR. Conversely, such codes appear as a
major building block of many known POR construc-
tions, and even induce parts of the adversary model,
if the attacker is considered as a noisy channel (Bow-
ers et al., 2009b). It must be emphasized that error-
correcting encoding appears more than advisable in
order to cope with noisy channels, even though those
are not part of the security and adversary model con-
sidered here. The construction in this work will not
explicitly rest on any particular error-correcting code
(ECC), besides applying an ECC for file storage and
to be consistent with the standard definition of a POR.

The POR construction described in the following
will be computationally secure. Unconditionally se-
cure schemes for static files have been given recently
(Dodis et al., 2009). Dynamic proofs of retrievabil-
ity have been studied in (Zheng and Xu, 2011) for
the first time, and subsequently in (Cash et al., 2012;
Chen and Curtmola, 2012). The last reference adds
the requirement of robustness, which demands recov-
ery abilities from arbitrary amounts of corruptions
within the data. This is traditionally achieved by for-
ward error-correcting codes. Such best-practice secu-
rity precautions are considered as implicitly done in
the upcoming protocols, thus details are omitted for
the sake of compactness. Most closely related to this
work is (Wang et al., 2011), which as well employs
Merkle-trees to update the file contents, but uses el-
liptic curve cryptographic primitives to do this, which
is not required here.

Another closely related yet slightly weaker notion
is provable data possession(Ateniese et al., 2007),
which like POR comes in static and dynamic variants
(Ateniese et al., 2008; Erway et al., 2009). How-
ever, and as recognized in the last reference, prov-
ing the possessionproperty is weaker than proving
theretrievability property, due to the extraction algo-
rithm that a POR protocol prescribes but a PDP pro-
tocol does not need (although many PDP protocols
do have a knowledge extractor prescribed implicitly
by their security model definitions). Other related no-
tions include proofs of storage (Ateniese et al., 2009)
and proofs of ownership (POW) (Halevi et al., 2011).
The latter may be viewed as a ”reverse” direction of
a POR, where it is the verifier who ought to show the
server that a file has originally been in his possession.
For that reason, the security guarantees achieved by a
POW are weaker than those of a POR.

Finally, it is worth noting that PORs have become
a valuable building block in various recent cloud stor-

age architecture proposals. See (Bowers et al., 2009a;
Resch and Plank, 2011; Stefanov et al., 2012) to get
started.

1.2 Contributions

Two mainstream constructions for a POR are known:
using spot-checks or using homomorphy (cf. (Liu and
Chen, 2011)). In the first variant, the verifier embeds
sentinels in the file that he will later on challenge to
verify the integrity of the file. The POR details mostly
determine how to create and hide the sentinels in the
file, so that the prover cannot precompute correct re-
sponses in advance. An example scheme in this class
is (Juels and Kaliski, 2007), and those schemes are
mostly bounded-use. The second line of construction
uses homomorphic primitives (signatures, authentica-
tors, etc.) to have the prover process the entire file
content in order to correctly respond to a given chal-
lenge. Such schemes often use cryptographic keys
for the processing, and are thus often unbounded-use.
An example from this class is (Shacham and Waters,
2008).

The contribution in this work is the design of a
scheme that falls into neither of these classes. The
construction is essentially sentinel-based, but due to
the dynamic update support lets us introduce new
fresh sentinels over the lifetime of the file, hence a-
posterior increase the number of possible challenges.
It is therefore referred to asquasi-bounded use(al-
though it is not entirely keyless). Moreover, the
scheme is most straightforwardly suitable for XML
file storage, and unlike other dynamic POR construc-
tions, can align its data structure to the given file,
rather than the other way around (as usual for dy-
namic POR).

The Construction in Brief: as in most POR
schemes, the file owner (verifier) embeds sentinel data
blocks in the file whose values are stored for sub-
sequent verification by spot checking. The idea of
the proposed scheme is to do these spot checks via
requesting hash-values from the file host (prover),
whilst allowing the blocks to be modified without al-
tering the hash-values. This requires the verifier’s
ability to find hash-collisions, and hence the use of
chameleon-hashes. Combining the latter with a con-
ventional Merkle-hashtree construction then essen-
tially creates a dynamic POR, with the unusual capa-
bility of allowing for a-posteriori sentinel embedding
while the file resides at the storage provider already.

Dynamic�Proofs�of�Retrievability�from�Chameleon-Hashes

297

2 DEFINITIONS

A function negl(t) is callednegligible, if negl(t) <
1/|p(t)| for every polynomialp and sufficiently large
t. Concerning probabilities, we say that a valuev is
overwhelming, if 1−v is negligible. The notationx‖y
denotes an encoding of two strings (or general data
items)x,y into a single string, from which a unique
extraction ofx andy is possible (with additional error-
correction if needed). For a partitioning of a fileF
into blocks asF = x1‖· · ·‖xn, we refer to a single
block as arecord (in alignment with database termi-
nology).

2.1 Structure of a POR

The structure of a POR, as used throughout this
work, is a slight extension (and simplification) of
the original POR definition of (Juels and Kaliski,
2007). The changes concern mostly the addition of
the update procedure, and the omission of details
on error-correcting encoding (justifications follow in-
line).

Setup: this algorithm takes a security parameter
t ∈N as input and initializes all cryptographic en-
gines (hash-functions, encryptions) by outputting
the respective public and secret parameters.

Encode: this algorithm takes a fileF = x1‖· · ·‖xn
and encodes in a way that enables subsequent
challenge-response verification cycles towards a
proof of retrievability. The process at some stage
involves error-correcting encoding to cover for
channel noise (in (Bowers et al., 2009b), the ad-
versary itself is viewed as a noisy channel, thus
making the encoding the central duty of a POR
protocol. However, this channel noise model may
be questioned to precisely capture an active at-
tacker that essentially does not act randomly).
Error-correcting encoding is assumed to happen at
the verifier’s and/or prover’s side, and further de-
tails on this stage are omitted (although this aspect
is briefly revisited later). The output ofEncode
consists of two data itemsF∗,β, whereF∗ is the
encoded file submitted to the prover for storage,
andβ comprises all information locally stored at
the verifier’s premises.

Challenge: this algorithm takes the current veri-
fier’s informationβ and outputs a challengeci and
an expected responser i .

Verify: the algorithmVverify checks a given chal-
lengec against a responser. If successful, it out-
puts 1, and zero otherwise.

Update: this algorithm takes a record indexi and
new record datãxi . It interacts with the prover to
replace the existing recordxi with the new record
x̃i , and outputs an updated versionβ′ of the current
verifier stateβ.

Extract: this algorithm takes the verifier’s dataβ
to compute a sequence of challengesc1, . . . ,cn,
from whose respective responsesr1, . . . , rn the file
F∗′ can be reconstructed (downloaded). This part
of a POR serves two purposes: first (and obvi-
ously), we must have some way of accessing the
full lot of stored data from the prover. Second, and
inspired by the construction of interactive proof
systems,extract serves as a proof of knowledge
for the prover to demonstrate the possession of the
file. Notice that this function may as well execute
update queries.

2.2 Chameleon Hashes

A chameleon hash(a.k.a.trapdoor commitment) acts
as a normal hash-function, but allows for efficient
construction of collisions if some secret trapdoor in-
formation is known. The structure will only be out-
lined and illustrated by an example. Full-fledged def-
initions and security proofs are available in (Ateniese
and de Medeiros, 2005).

A chameleon-hash (in a simplified setting) con-
sists of the following algorithms:

KeyGen: a probabilistic algorithm that takes a secu-
rity parametert and outputs a public/secret key-
pair (pk,sk).

Hashing: a deterministic algorithmCH that uses
the public-key pk to map a stringx ∈ {0,1}∗

and an auxiliary random valuer to a hash
CHpk(m, r)∈ {0,1}ℓ of fixed lengthℓ (determined
by the security parametert).

Forge: a deterministic algorithm that takes the se-
cret keysk, a pre-image(x, r) and its hash-value
CHpk(x, r) to produce a second pre-image(y,s)
such thatCHpk(x, r) =CHpk(y,s).

In a full-fledged definition (see (Ateniese and
de Medeiros, 2005)), the construction of collisions
is referred to asuniversal forgery, as opposed to the
additional requirement ofinstance forgery, in which
case we would be given two pre-images and ought to
compute a third one with the same hash. Moreover, all
of the above algorithms would additionally take some
auxiliary inputs. This technical degree of freedom is
not required in the following.

Security of a chameleon hash usually con-
cerns collision-resistance but as well semantic se-
curity, message-hiding and key-exposure freeness.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

298

The interested reader may consult (Ateniese and
de Medeiros, 2005) for details, since the only prop-
erty needed in the following is collision-resistance.
For any probabilistic algorithmA , a hash is said to
becollision-resistant, if the likelihood ofA to output
a second pre-image upon given(x, r) and hash-valueh
is negligible in the security parameter. Formally, this
conditional probability is denoted as

SuccCH
2 (A):=Pr[CHpk(y,s) =CHpk(x, r)

|(y,s)← A(x, r, pk)],

where the explicit dependence onA is omitted when-
ever this is clear from the context.

An example construction has been given in (Ate-
niese and de Medeiros, 2005):
KeyGen: Pick two large primesp,q such thatp =

u · q+ 1, and select a generator elementg of
the subgroup of squares of orderq. Pick a ran-
dom secret keysk∈ {1,2, . . . ,q−1} and define
the public-key to bepk= gskMOD p. Choose a
pre-image resistant cryptographic hash function
H : {0,1}∗→{0,1}ℓ with ℓ≥ ⌈log2 p⌉.

Hashing: Choose two random valuesρ,δ∈Zq and
computee := H(m‖ρ) and define the Chameleon
hash as

CHpk(m,ρ,δ) := ρ− (pkegδ mod p) mod q.

Forge: Let C = CHpk(m,ρ,δ) be the known out-
put for which we seek another pre-image. Pick
an arbitrary valuem′ 6= m and a random num-
ber k ∈ {1,2, . . . ,q−1}. Compute the values
ρ′ = C+(gk mod p) mod q, e′ = H(m′‖ρ′) and
δ′ ≡ k− e′ · sk (mod q). The sought collision is
found at(m′,ρ′,δ′), since

CHpk(m
′,ρ′,δ′) = ρ′− (pke′gδ′ mod p) mod q

=C+
(

gk mod p
)
−
(

gsk·e′gδ′ mod p
)

mod q

=C=CHpk(m,ρ,δ).
To ease notation, let us henceforth omit the explicit
mentioning of auxiliary randomizers along with the
hash input, and writeCHpk(m) as a shorthand of
CHpk(m,ρ,δ), whenever the randomizers themselves
are of no particular interest.

It is essential for this example hash function, as
well as for the protocol presented in section 3, that
parts of the pre-image constructed byForge can be
chosen freely. This makes the use of randomizers
along with the hash input inevitable.

2.3 Merkle-Hashtrees

Merkle-hashtrees are a widely studied and standard
hashing construction. It is worthwhile to briefly re-
view the idea here, to draw attention to the particular

x0 x1 x2 x3 x4 x5 x6 x7

h0 h1 h2 h3 h4 h5 h6

H

H

HH

HHHH

HHH H HHH

h7

h01 h23 h45 h67

h03 h47

r∗

Figure 1: Merkle-tree example.

fact that onlyO(logn) hashes are required to update
a given hash, if one out ofn blocks of the data is re-
placed. This is important in the following.

Assume the dataF to be partitioned inton records
as F = x1‖· · ·‖xn. For brevity, let us assume that
n is a power of two. Hashing is done by assign-
ing then blocks to a binary tree of heightO(logn),
where each inner nodeu is assigned the hash-value
H(v‖w), wheneverv,w are child nodes ofv (we asso-
ciate the name of a node with its attached data item
for simplicity). The root-hash is then computed re-
cursively, starting from the leaf nodes that have the
recordsx1, . . . ,xn attached to them. Now, suppose that
a single recordxi is replaced bỹxi . Then, updating the
root-hash only requires updating the hashes along the
path fromx̃i to the root. For that matter, we require
the hashes of all sibling nodes along the path nodes,
which gives a total ofO(logn) hashes for a consistent
change to the data and hash value. Figure 1 illustrates
this for the case of eight records. The labelshi j denote
hashes ranging over sets of blocksxi ,xi+1, . . . ,x j . As-
suming that we updatex3, we need only the values
h2,h01 andh47 (shown bold) along the path fromx3
up to the root, to update the overall hashr∗.

2.4 Adversary and Security Model

The original game-based security model and defini-
tion of (Juels and Kaliski, 2007) will be extended,
since the POR construction will explicitly support
modifications to the stored file. The adversaryA is
composed from two probabilistic algorithmsAsetup

and Aresp. Algorithm Asetup interacts with an hon-
est verifierV to initialize the POR system, and set
up an archive storing a fileF∗ in first place. To this
end, it is allowed to get challenges and updates from
V . The output of this phase is an archiveF∗ (held by
the prover) and public parameters for the POR proto-
col. In the second phase,Aresp (as an oracle) responds
to further challenges and updates issued by the veri-
fier, beforeV finishes the experiment by extracting
the file. We consider an attack as successful, ifV

Dynamic�Proofs�of�Retrievability�from�Chameleon-Hashes

299

extracts a fileF 6= F∗. This model is formalized via
two experiments, taking a security parametert for the
setup, and the system parametersα for the challenge-
response phase.

Oracles for the verifier’s functions challenge, up-
date and verify are denoted asVchal, Vupd andVverify.
Oracle access to all of the verifier’s functions is abbre-
viated asAV . The symbol←R denotes a uniformly
random draw.

ExperimentExpA
setup(t) ExperimentExpA

chal(F
∗,α)

κ← KeyGen(t) action←R {chal,upd}

(F∗,α)← AV
setup c← Vaction(α)

giveα to V r← Aresp(F∗,α)
outputVverify(r,α)

Following the security model of (Juels and
Kaliski, 2007), a POR is considered as secure, if any
adversary succeeding inExpA

chal(F
∗,α) with over-

whelming probability (≥ 1− ζ) cannot trick the veri-
fier into extracting something else thanF∗. The suc-
cess rate inExpA

chal(F
∗,α) is denoted as

SuccAchal(F
∗,α) := Pr

[
ExpA

chal(F
∗,α) = 1

]
.

Now, thesecurity gameis the following: the adver-
saryA is assumed to host the fileF∗, created during
an execution ofExpA

setup(t). The verifierV is given
oracle access toAresp and attempts to extract the file.
The attacker wins ifV extractsF 6= F∗. The proba-
bility for this not to happen is denoted as

SuccAextract(F
∗,α) := Pr

[
F = F∗|F← extractAresp (α)

]
.

Definition 2.1. We call a POR(ρ,λ)-valid, if for some
valueζ negligible in the security parameter t,

Pr

[
SuccA

chal(F
∗,α)≥ λ, (F∗,α)← ExpA

setup(t),
SuccA

extract(F
∗,α)< 1−ζ F← extractAresp(α)

]

≤ ρ.

Intuitively, we seek a large value ofλ and a small
value ofρ. In that case, with a large likelihood 1−
ρ, either the file can be extracted with overwhelming
probability, or the attacker is discovered by virtue of
the challenge-response cycles.

3 THE CONSTRUCTION

The idea is closely related to how sanitizable sig-
natures are designed; using Merkle-hashtrees and
chameleon-hashes to construct a sentinel-based proof
of retrievability. Like the Juels-Kasiski scheme, the
protocol uses sentinels for spot checking, but unlike

this previous proposal, thoseare not embeddedin the
file. Assume that the file is organized in a binary hash-
tree, with leafs corresponding to data chunks, here-
after calledrecords. Let the i-th such record be de-
noted byxi , so that the file isF = x1‖x2‖. . .‖xn. For
simplicity, let us assume thatn is a power of two (to
have the tree full) and think of the fileF as an ordered
set of records. Moreover, assume that the verifier has
selected a (secret) subsetS⊆ {1,2, . . . ,n} for subse-
quent POR-challenges.

Encoding. Assume that the file is encoded in an
error-correcting fashion (see, e.g., (Juels and Kaliski,
2007) or (Bowers et al., 2009b) for detailed justifi-
cations), yielding a sequence of blocks, which we
index by i ∈ S again. Notice that the ECC is ap-
plied separately to each partitionx1, . . . ,xn of the file,
in order to avoid invalidating parts of a code-word
via a legitimate update operation. Theencode al-
gorithm chooses a challenge valueci for eachi ∈ S
and computes the root hash along the tree with the
i-th record being concatenated withci , i.e., it hashes
xi‖ci in place ofxi to compute the expected correct
responser i for the challengeci on recordi ∈ S. He
stores the list of allr i locally, along with the root-hash
r∗ =CHpk(F) of the original fileF. The fileF is then
given (as is) to the prover (notice that no explicit sen-
tinel information is embodied, as all verification data
is stored locally at the verifier’s side).

Challenges. Thechallenge algorithm picks a ran-
dom record index (not necessarily one fromS; reasons
will follow below) and submits the challenge(i,ci) to
the prover (whereci is random ifi /∈S). The prover re-
sponds by re-computing the hash tree using the mod-
ified leafxi‖ci, and returns the data recordxi and the
hash-values of all sibling node’s along the path from
xi up to the root.

Challenges on the same record cannot be used
more than once, in order to prevent the server from
learning correct responses to a particular record.
However, for the sake of detecting a corruption more
reliably, challenges should be repeated on differ-
ent records during the same audit, i.e., POR execu-
tion. Extensions towards multiple queries on the same
record are discussed in section 5.4.

Verifications. The verify algorithm uses the
prover’s provided hash-values to recompute the root
hashr ′i and accepts if eitheri /∈ S, or if i ∈ S and the
prover responds withr ′i = r i .

Updates. Observe that we cannot straightforwardly
replace a recordxi by x̃i , as this would instantly in-

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

300

validate all locally stored responses. Here comes the
chameleon hash into play: first, the client queries the
prover by runningchallenge to submit the pair(i,λ),
where i is the record-index to be updated andλ is
the value to be concatenated. Ifi ∈ S, thenλ = ci
(the known challenge), otherwiseλ can be chosen
randomly. The prover’s response will consist of the
”old” data itemxi , and additional verification infor-
mation (if a record inS is updated, thenV can do a
verification, or otherwise skip this intermediate step).
Then, in order not to invalidate other locally stored
responses, the client uses his secret keysk to compute
a collisions

CHpk(xi) =CHpk(x̃i),

for the chameleon hash, so that all known root hashes
r j for all j ∈ Sremain intact. Here, let us assume that
the collisionx̃i embodies the updated record contents,
along with properly constructed auxiliary randomiz-
ers attached insidẽxi to enforce the hash-collision (the
example chameleon hash of section 2.2 permits this).

Embedding new sentinels:In case that the new
recordx̃i shall be challenged subsequently, the veri-
fier concatenates another fresh challenge valuec̃i to
x̃i , and computes the new root hashr̃ i (by virtue of the
verification information obtained previously forxi) as
the correct response to a potential future challenge.
All of this happens locally (so the prover does not
know about the existence of this new sentinel). No-
tice that the prover, although it knows that the hash-
values for the old and new record are identical, cannot
abandon the update, as the client may in future query
exactly this modified record.

The scheme is thus calledquasi bounded-use, as
challenges that were consumed bychallenge can be
refreshed byupdate.

Extraction. The extract algorithm simply requests
and error-corrects all records from the prover, and ver-
ifies the hash of the file in its current state against the
locally stored root hashr∗ = CHpk(F). In case of
an adversary that does not respond deterministically
(i.e., a probabilistic attacker), the same technique as
in (Juels and Kaliski, 2007) can be applied: we first
use the error-correcting encoding to correct as many
errors as possible. If this recovery fails, then a block
is requested multiple times, and a majority decoding
is done. The analysis as done in (Juels and Kaliski,
2007) applies here as well, thus making the majority
decoding work correctly, if a fraction strictly greater
than 1/2 can be retrieved correctly.

4 SECURITY AND EFFICIENCY

Unlike a security proof by reduction, the argument
will not rest on an algorithm that breaks some cryp-
tographic primitive using a breaking algorithm for the
here presented scheme. Instead, the proof of theorem
4.1 is ”direct”.

Theorem 4.1. The POR construction given in section
3 is(ρ,1−|S|/|F |)-valid for ρ being negligible in the
security parameter t.

Proof. Define the events

A :=
{

SuccAextract(F
∗,α)< 1− ζ

}

and
B :=

{
SuccAchal(F

∗,α)≥ λ
}
,

both of which are conditional on[(F∗,α) ←
ExpA

setup(t)]∧ [F ← extractAresp(α)]. We show that
the probability of¬A∪¬B is overwhelming (≥ 1−ζ),
so that the likelihood Pr[A∩B] is negligible (less
thanρ). We have Pr[¬A∪¬B] = Pr[¬A]+Pr[¬B]−
Pr[¬A∩¬B]. The event¬A happens if and only if
the verifier retrievesF =F∗ with overwhelming prob-
ability. By construction, however,extract checks
the hashCHpk(F∗) against the known root hashr∗ =
CHpk(F). The event of acceptance uponCHpk(F) =
CHpk(F∗) for a corrupted fileF∗ 6= F is nothing else
than a hash-collision, whose occurrence is only negli-
gibly probable for a cryptographic hash (as well as a
Chameleon-hash, based on a collision-resistant hash).
It follows that Pr[¬A]≥ 1−negl(t).

Concerning the event¬B, the attacker can in any
case correctly respond to a fraction of at mostλ =
1−|S|/|F | challenges (as the prover has no expected
responses stored for these blocks). So for thisλ, we
have Pr[¬B] = 0.

By Sklår’s theorem, Pr[¬A∩¬B] is expressible as
Pr[¬A∩¬B] = C(Pr[¬A] ,Pr[¬B]) for some copula-
function C(x,y) that satisfies the upper Fréchet-
Hoeffding bound C(x,y) ≤ min{x,y}. Hence,
Pr[¬A∩¬B] = 0 because Pr[¬B] = 0 (intuitively and
less technically, the intersection of two sets cannot
be larger than either of the two). The proof is com-
plete, since Pr[¬A∪¬B] ≥ 1− negl(t) + 0− 0 and
thus Pr[A∩B] = 1−Pr[¬A∪¬B]≤ negl(t).

Concerningefficiency, the file storage require-
ments are increasing with the number of updates.
Measuring the performance in absolute values (via
an implementation) is subject of currently ongo-
ing efforts (along with theoretical improvements as
sketched in the conclusion section below). Initially,
the file is stored as is, so that no overhead is needed

Dynamic�Proofs�of�Retrievability�from�Chameleon-Hashes

301

Table 1: Complexity (excluding efforts for error correction).

computational cost for the
Operation verifier prover
Encode O(nlogn) O(nlogn)
Challenge O(1) –
Response – O(logn)
Verify O(logn) –
Update O(1) O(1)

new sentinel O(logn) –
Extract O(nlogn) O(nlogn)

if the randomizer for the chameleon hash is computed
from the data itself (via a pseudorandom function for
example), unless explicitly stored with the file record.
However, the nature of the chameleon hash implies
that afterk updates, we have a total lot ofO(|F |+ k)
bits stored at the verifier’s side.

For a response to a challenge or an update, we
transmit all hashes along all sibling nodes on the
path before submitting the new data. This comes to
O(logn) bits for n records in the file and a binary
hash-tree (generalizations are discussed in the next
section).

The computational burden is determined by the
number of chameleon-hashes to be computed. Pre-
cisely, for a file withn records, the costs are listed in
table 1. Extract is here the most expensive opera-
tion for the verifier, sinceV after having downloaded
the file via a sequence ofn challenges recomputes
the whole hash-tree. The cost on both sides is thus
O(nlogn).

Freshness. Notice that although the chameleon
hash of an old and new record is the same, the
provider cannot simply refrain from updating the
record, as he must expect future queries on exactly
this updated record. In that case, if the old record
x has been queried with challengec, then the new
record will be queried with some challengec̃, yield-
ing CHpk(x‖c) 6= CHpk(x‖c̃), unless this is a hash-
collision by coincidence.

An Example Parametrization. The chameleon-
hash used in this work is basically a variation of
Nyberg-Rueppel, which in turn is closely related to
the ElGamal signature scheme. Consequently, the
same security recommendations as for ElGamal ap-
ply to the parametrization of the chameleon hash
(see (Ateniese and de Medeiros, 2005) and (Menezes
et al., 1997) for comments). So, for the example, let a
hash-value and challenge have 256 bits each.

Suppose that we store a 2GB file, made up of
n= 227 blocks (e.g., unicode characters with 4 bytes).

Suppose that we wish to run one audit per day over
the next five years, without embedding new sen-
tinels. Then we ought to design the protocol to handle
5× 365= 1 825 verifications. If each audit consists
of 1 000 challenges, then there are 1 825 000 sen-
tinels with 2× 256 bits (for the challenge-response
pair) to be stored at the client side. This makes a to-
tal of roughly 116.8 MBytes for the client (approx-
imately 5.4% of the total file size). The likelihood
for a single challenge to detect a corruption is thus
only 5.4%. However, making a 1 000 challenges per
audit, the likelihood to discover a corruption quickly
approaches 1.

5 EXTENSIONS

Several extensions to the scheme are imaginable and
partially straightforward.

5.1 Saving Random Coins

Observe that except for the leaf-level where the
Chameleon-hash is required, any standard crypto-
graphic hash-algorithm can be used for the inner
nodes in the Merkle-tree, so to save random coins that
would be required otherwise.

5.2 Application to XML Files

As being inherently tree-structured, the Merkle-
hashtree can be generalized toℓ-ary trees in the ob-
vious way, so that the scheme remains unchanged ex-
cept for trivial modifications. However, the computa-
tional cost all grow by the branching factor (the max-
imal count of children of an inner node)ℓ of the tree.

5.3 Insertions and Deletions

Those are slightly more tricky and basically come at
the same cost as for these operations to be performed
on a humble array. More precisely, toinserta record
at a given positioni, we may applyupdate to all n− i
successor records to shift them one place apart, so that
the new record can be inserted at the chosen position.
The removal of a record at positioni can be done in
the same fashion or we mark the record as removed
by replacing the data with its hash-value (this would
correspond to a sanitization or redaction in editable
signature terminology). In case that the hash-tree is
already full, it must be recomputed. Alternatives are
offered byℓ-ary trees with designated free spaces in
between to insert new records, or if the data is orga-
nized in a skip-list rather than a tree.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

302

5.4 Multiple Queries on a Record

A simple way to avoid the prover learning what
records have been queried is to challenge a whole set
S′ ⊂ F of records at a time, whereS′ ∩S 6= /0. Any
data referring to a record inS′ for which no stored
response is expected can be abandoned. In this way,
the prover is left with residual uncertainty about what
record has actually been queried. A more elegant
possibility is offered by private-information retrieval
(PIR; see (Gasarch, 2004) for a survey), yet the ad-
ditional computational and communication overhead
must be assured not to outweigh the cost for an entire
download viaextract.

5.5 Fairness

An interesting additional security requirement in dy-
namic PORs has been introduced in (Zheng and
Xu, 2011), calledfairness. In brief, this requires
that an honest prover cannot be accused successfully
by a malicious verifier to have modified the stored
file. Similar notions appear in the context of sanitiz-
able signatures (signer- and sanitizier accountability).
However, we can keep the model and security defini-
tions much simpler if we require all challenges and
update requests to be digitally signed by the verifier,
including the originally submitted file viaencode.
Arguments like the previous ones can then be settled
at the court by the prover showing the entire history
of updates and the original file signature. This es-
sentially relies on a versioning system that a good
storage should maintain anyway. Note that the sig-
nature can indeed remain intact without needing the
verifier’s secret signature key, since the construction
can be extended to fit into standard sanitizable signa-
ture schemes. This direction is left open for future
research.

6 CONCLUSIONS

This work presented a simple and partially generic
construction of dynamic proofs of retrievability from
chameleon-hashes (trapdoor commitments). The pro-
posed scheme is simple and most naturally used with
XML structured data that is stored at an untrusted
external server, e.g., a cloud storage provider. Un-
like standard proofs of retrievability schemes, the
construction in this work is neither bounded nor un-
bounded use, but allows for the introduction of new
sentinels for future integrity spot checks. This fea-
ture seemingly does not exist in any so-far existing
proof of retrievability scheme. In its present form, the

protocol is designed to allow for changes to the file,
but not to the structure as such, which is an interest-
ing open question for future research. Especially so,
since structural changes are so-far not supported by
any known POR protocol.

ACKNOWLEDGEMENTS

I thank the anonymous reviewers for their careful
reading, valuable comments and useful suggestions.

REFERENCES

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner,
L., Peterson, Z., and Song, D. (2007). Provable data
possession at untrusted stores. InProceedings of the
14th ACM conference on Computer and communica-
tions security, CCS ’07, pages 598–609, New York,
NY, USA. ACM.

Ateniese, G. and de Medeiros, B. (2005). On the key ex-
posure problem in chameleon hashes. InProceed-
ings of the 4th international conference on Security in
Communication Networks, SCN’04, pages 165–179,
Berlin, Heidelberg. Springer.

Ateniese, G., Di Pietro, R., Mancini, L. V., and Tsudik, G.
(2008). Scalable and efficient provable data posses-
sion. InProceedings of the 4th international confer-
ence on Security and privacy in communication ne-
towrks, SecureComm ’08, pages 9:1–9:10, New York,
NY, USA. ACM.

Ateniese, G., Kamara, S., and Katz, J. (2009). Proofs of
storage from homomorphic identification protocols.
In Proceedings of the 15th International Conference
on the Theory and Application of Cryptology and In-
formation Security: Advances in Cryptology, ASI-
ACRYPT ’09, pages 319–333, Berlin, Heidelberg.
Springer-Verlag.

Bowers, K. D., Juels, A., and Oprea, A. (2009a). HAIL: a
high-availability and integrity layer for cloud storage.
In ACM Conference on Computer and Communica-
tions Security, pages 187–198.

Bowers, K. D., Juels, A., and Oprea, A. (2009b). Proofs
of retrievability: theory and implementation. InPro-
ceedings of the 2009 ACM workshop on Cloud com-
puting security, CCSW ’09, pages 43–54, New York,
NY, USA. ACM. full version available from ePrint,
report 2008/175; http://eprint.iacr.org.

Cash, D., Küpçü, A., and Wichs, D. (2012). Dynamic
proofs of retrievability via oblivious RAM. InIACR
Cryptology ePrint Archive. Report 2012/550.

Chen, B. and Curtmola, R. (2012). Robust dynamic prov-
able data possession. InICDCS Workshops, pages
515–525. IEEE Computer Society.

Dodis, Y., Vadhan, S., and Wichs, D. (2009). Proofs of
retrievability via hardness amplification. InProceed-
ings of the 6th Conference on Theory of Cryptogra-

Dynamic�Proofs�of�Retrievability�from�Chameleon-Hashes

303

phy, TCC ’09, pages 109–127, Berlin, Heidelberg.
Springer-Verlag.

Erway, C., Küpçü, A., Papamanthou, C., and Tamassia, R.
(2009). Dynamic provable data possession. InPro-
ceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pages 213–
222, New York, NY, USA. ACM.

Gasarch, W. (2004). A survey on private information re-
trieval. Bulletin of the EATCS, 82:72–107.

Halevi, S., Harnik, D., Pinkas, B., and Shulman-Peleg, A.
(2011). Proofs of ownership in remote storage sys-
tems. InProceedings of the 18th ACM conference
on Computer and communications security, CCS ’11,
pages 491–500, New York, NY, USA. ACM.

Juels, A. and Kaliski, B. S. J. (2007). PORs: Proofs of
Retrievability for Large Files. InACM Conference on
Computer and Communications Security, CCS 2007,
pages 584–597. ACM.

Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M.,
and Isard, M. (2003). A cooperative internet backup
scheme. InProceedings of the USENIX Annual Tech-
nical Conference, ATEC ’03, pages 29–41, Berkeley,
CA, USA. USENIX Association.

Liu, S. and Chen, K. (2011). Homomorphic linear authen-
tication schemes for proofs of retrievability. InPro-
ceedings of the 2011 Third International Conference
on Intelligent Networking and Collaborative Systems,
INCOS ’11, pages 258–262, Washington, DC, USA.
IEEE Computer Society.

Menezes, A., van Oorschot, P. C., and Vanstone, S. (1997).
Handbook of applied Cryptography. CRC Press LLC.

Paterson, M. B., Stinson, D. R., and Upadhyay, J. (2012).
A coding theory foundation for the analysis of
general unconditionally secure proof-of-retrievability
schemes for cloud storage.CoRR, abs/1210.7756.

Resch, J. K. and Plank, J. S. (2011). AONT-RS: blend-
ing security and performance in dispersed storage sys-
tems. InProceedings of the 9th USENIX conference
on File and storage technologies, FAST’11, pages 14–
14, Berkeley, CA, USA. USENIX Association.

Shacham, H. and Waters, B. (2008). Compact Proofs of Re-
trievability. In Advances in Cryptology - ASIACRYPT
2008, volume 5350 ofLNCS, pages 90–107. Springer.

Stefanov, E., van Dijk, M., Juels, A., and Oprea, A. (2012).
Iris: a scalable cloud file system with efficient in-
tegrity checks. InProceedings of the 28th Annual
Computer Security Applications Conference, ACSAC
’12, pages 229–238, New York, NY, USA. ACM.

Wang, Q., Wang, C., Ren, K., Lou, W., and Li, J. (2011).
Enabling public auditability and data dynamics for
storage security in cloud computing.IEEE Transac-
tions on Parallel and Distributed Systems, 22(5):847–
859.

Xu, J. and Chang, E.-C. (2012). Towards efficient proofs of
retrievability. InProceedings of the 7th ACM Sympo-
sium on Information, Computer and Communications
Security, ASIACCS ’12, pages 79–80, New York, NY,
USA. ACM.

Zheng, Q. and Xu, S. (2011). Fair and dynamic proofs of
retrievability. In Proceedings of the first ACM con-
ference on Data and application security and privacy,

CODASPY ’11, pages 237–248, New York, NY, USA.
ACM.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

304

