
Universally Unique Identifiers: How to ensure

Uniqueness while protecting the Issuer’s Privacy∗

Martin Schaffer

System Security
Klagenfurt University (A)

m.schaffer@syssec.at

Peter Schartner

System Security
Klagenfurt University (A)

p.schartner@syssec.at

Stefan Rass

Transportation Informatics
Klagenfurt University (A)
stefan.rass@uni-klu.ac.at

Abstract Universally Unique Identifiers (UUIDs) –

standardized in ISO/IEC 9834-8:2005 – are widely used

to uniquely identify entities in modern IT-systems.

Apart from what promised in the standard, UUIDs are

not guaranteed to be unique while preserving the is-

suer’s privacy. In this paper we introduce a novel con-

cept called collision-free number generation that can be

used to locally generate UUIDs which are provably glob-

ally unique. Moreover, if the presented technique is in-

stanced carefully, a poly-bounded adversary is not able

to efficiently identify the issuer of a UUID. Our ap-

proach is efficient in terms of communication, time and

space. As a by-product, it can be applied in other areas

where collisions have to be avoided (e.g. key generation,

pseudonym systems and interactive proofs).

Keywords: universally unique identifiers, collision-free

number generation, privacy, unique keys, pseudonyms.

1 Introduction

Uniquely identifying (physical or virtual) objects by
means of a binary string (called identifier) is an in-
trinsic requirement for any modern IT-system. So,
the main requirement for these identifiers is quite
obvious: Within the life-time of the system, two
different objects must not hold the same identifier.
Otherwise, the system will not be able to distin-
guish between these objects, which may lead to sys-
tem failures or security breaches.
As long as the objects stay in the range controlled
by the issuing party, there is no problem at all. The
employed unique identifiers can easily be generated.
In the naive approach, we simply use a counter,
which is incremented before issuing a new identifier.
In a distributed environment, where several issu-
ing parties generate identifiers for objects, which
will be exchanged with other instances of the sys-

∗Originally published in the Proceedings of SAM’07.

tem, we need to enhance the mechanism proposed
above. Now, each issuing party will hold a glob-
ally (or system-wide) unique identifier, which is
concatenated to the counter in order to generate
globally unique identifiers.

Unfortunately, uniqueness is not the only require-
ment. In many applications we need some sort of
privacy protection in terms of anonymity and un-
linkability. Anonymity in this scope means, that
a malicious party cannot determine the issuer of
a given identifier efficiently. Unlinkability means,
that he cannot check, if two given identifiers have
been generated by the same issuer.

ISO/IEC 9834-8:2005 [8], the standard for univer-
sally unique identifiers (UUIDs), is based on RFC
4122 [18], and addresses both, uniqueness and pri-
vacy protection. These UUIDs (or globally unique
identifiers in Microsoft’s implementation) can be
found in a large number of applications. For in-
stance, they are used as identifiers

• in programming languages (for objects),

• in the windows registry,

• in databases,

• in XML,

• in RPCs of COM and CORBA,

and are used for SOAP request messages. All ver-
sions of UUIDs, generated according to the RFC
4122, are 128 bit numbers. Depending on the used
generation algorithm, different properties hold:

Algorithm 1 guarantees global uniqueness for
UUIDs V1 if IEEE 802 MAC-addresses are used
and none of them are cloned or manipulated. For
the case that no network address is available, a
randomly chosen address is used. Hence, global
uniqueness is not guaranteed, unless only network
addresses are used. In that case, however, privacy
is not guaranteed, since the UUID does not hide
the MAC-address.

Algorithm 2 derives UUIDs from unique names,
but with the use of cryptographic hash algorithms
(MD5 for UUIDs V3 [23] and SHA-1 for UUIDs V5
[2]). Hence, there is only a ’hope’ for global unique-
ness since collision can occur (cf. birthday paradox
[19]). Privacy is guaranteed due to the one-way
property of cryptographic hash functions.

Algorithm 3 creates UUIDs V4 from random num-
bers, i.e. collisions can again occur due to the birth-
day paradox. Privacy is guaranteed since no name
or network address is involved.

Interestingly, none of the three algorithms meets
the design goals: guaranteed global uniqueness,
while at the same time preserving the privacy of
its issuer. Nevertheless, uniqueness is promised in
ITU-T Rec. X.667 (cf. page 7 in [7]):

”Three algorithms are specified for the generation
of unique UUIDs, using different mechanisms to

ensure uniqueness.”

The question that we try to answer in this paper
is, if we are able to find a solution to efficiently
guarantee global uniqueness while preserving the
privacy of the issuer of a UUID.
A simple solution could be to locally run a block-
cipher in counter mode, i.e. encrypting a unique
identifier (e.g. the MAC-address) concatenated to
a counter which is incremented in every round.
Then however, uniqueness is only guaranteed if ev-
ery number generator uses the same master secret
(or public key if asymmetric encryption is used).
Obviously, such an approach leads to a privacy hole
because once the master secret is known, the used
identifier can be efficiently obtained. Hence, an
additional design goal must be, that inverting one
number generation by chance, must not lead to an
efficient inversion of any other number generation.

Related Work: Apart from the algorithms dis-
cussed above, a rare number of approaches towards
unique number generation exists: In [6], a solution
has been proposed, where uniqueness is guaranteed
by concatenating the time to the physical position
of a device (obtained by use of the Global Position-
ing System GPS). This approach, however, is not
very practical, since the GPS is not very precise
and furthermore not always available (e.g. within
buildings). Another solution is to locally generate
globally unique private keys, proposed in [17]. The
solution there, however, requires that each genera-
tor is provided with the same master secret. Once
this master secret has been found, all keys can be
linked to their originators. Improved approaches
without the use of master secrets have been pro-

posed in [25]. The solutions there output unique
numbers which are either very large, or – if gen-
erated by the same instance – mutually linkable.
None of these solutions guarantees uniqueness of
(short) numbers while providing unlinkability with-
out the use of master secrets at the same time.

Our Contribution: In this paper we introduce
the concept of collision-free number generation
which provides local generation of globally unique
numbers without any communication (apart from
the initialization process). Given such a number,
a poly-bounded algorithm is not able to efficiently
identify the corresponding generator. Our con-
struction provably outputs unique numbers which
constitutes an intrinsic advantage over the algo-
rithms which are widely used to generate UUIDs.
Moreover, UUIDs generated by our techniques are
not efficiently linkable to their originator and hence
the privacy of the issuer is preserved.

Road-Map: The remainder of this work is orga-
nized as follows: In section 2, we describe a general
way, how a collision-free number generator (CFNG)
can be designed. In section 3, an efficient imple-
mentation is given for the generation of UUIDs.
It is then analyzed according to the requirements
stated in section 2. In section 4, further applica-
tions of a CFNG are motivated and discussed. The
paper closes in section 5 with an open problem.

2 Basic Construction

The problems stated in section 1 lead to the follow-
ing requirements on the design of a CFNG:

R1 (Uniqueness): A locally generated number
must be globally unique for a certain time-interval.

R2 (Efficiency): The generation process must be
efficient regarding communication, time and space.

R3 (Privacy): Here we distinguish two cases:

1. Hiding: Given a generated number, a poly-
bounded algorithm must not be able to effi-
ciently identify the corresponding generator.

2. Unlinkability: Given a set of generated numbers,
a poly-bounded algorithm must not be able to
efficiently decide which of them have been gen-
erated by the same generator.

For efficiency reasons, an identifier-based approach
is used. Every generator is (once) initialized with a
globally unique identifier, which we denote by UI.
The idea now is, to derive several unique numbers
from UI, such that none of them is linkable to UI.
Henceforth, lx denotes the bit-length of x.

CFNG1 CFNG2 CFNG3

UG UGUGPre PrePre

f ff ggπ ππ

r rr τ(r)
u uu

of ofof ogoπ

o oo

sy
s-

p
a
ra

m
s

sy
s-

p
a
ra

m
s

sy
s-

p
a
ra

m
s

Figure 1: Three Variants for Collision-Free Number Generation

Uniqueness Generation: As a first step a rou-
tine is needed, which derives a unique number u
from UI in every run of the generation process.
We call such a routine uniqueness generator and
denote it by UG. UG can be designed as follows:

u = UG(), u = UI||cnt||pad

where pad is a suitable padding for later use of u
and cnt is an lcnt-bit counter initialized by cnt ∈R

{0, 1}lcnt and incremented modulo 2lcnt in every
round. So, the output of UG is unique for at least
2lcnt−1 rounds. So far, the privacy is not preserved,
since UI is accessible through u.

Uniqueness Randomization: A first step to pro-
vide privacy is to transform u such that the result-
ing block looks random. Hereby, we use an injective
function fr, where r is chosen from a set R. The
idea is that u is randomized by r and hence we
call fr the uniqueness randomization function. We
suggest to either use an injective one-way mixing-
transformation for fr according to Shannon [10]
(e.g. symmetric encryption) or an injective prob-
abilistic one-way function based on an intractable
problem (e.g. the discrete logarithm problem [19]).
In both cases, r is chosen at random. The out-
put of fr is obviously not guaranteed to be unique:
Let u, u′, u 6= u′ and r, r′ random, where r 6= r′.
Then fr(u) = fr′(u′) may hold since two different
injective functions fr and fr′ map on the same out-
put space. On the other hand, this problem cannot
happen if r = r′, since fr is injective. To generate
a unique block o, sufficient information about the
chosen function fr has to be attached to its output.
Hence, o can be defined as o = fr(u)||r. The con-
catenation of two blocks by writing them in a row
is an unnecessary restriction. The bits of the two
blocks can be concatenated in any way. This leads
to the following construction (cf. figure 1, CFNG1):

o = π(fr(u), r), u = UG(), r = Pre()

where π is a (static) bit-permutation function (or
bit-permuted expansion function) over the block
fr(u)||r and the generation of r is done by a routine
called pre-processor, denoted by Pre. The main-
task of Pre is the correct selection of r. This can

include a key generation process if fr is an encryp-
tion function, for instance.

Theorem 2.1 Let u be a globally unique number,
fr be an injective function and r ∈ R. Furthermore,
let π be a static bit-permutation function or bit-
permuted expansion function. Then o = π(fr(u), r)
is globally unique, for all r ∈ R.

Proof. Let o′ = π(fr′(u′), r′) and u 6= u′. The case
where r 6= r′ obviously guarantees that the pairs
(fr(u), r) and (fr′(u′), r′) are distinct. Now con-
sider the case where r = r′. Since u 6= u′ holds per
assumption fr(u) 6= fr′(u′) holds due to the injec-
tivity of fr and the fact that r = r′. Thus, we have
(fr(u), r) 6= (fr′(u′), r′) for all r, r′ ∈ R. It remains
to show that o 6= o′. This is obviously the case,
because π is static and injective.

If r is not sufficient to invert fr, privacy protec-
tion is achieved through the one-way property of
fr. This can be the case if fr is an asymmetric
encryption function and r the public key. For the
case that r can be used to invert fr efficiently, we
propose two extensions described in the following.

Privacy Protection: Given o = π(fr(u), r), com-
puting π−1(o) = (a, b) is easy since π is public. Now
assume that computing f−1

b (a) = u is feasible. To
overcome this drawback we suggest using an injec-
tive one-way function g to hide π(fr(u), r). We call
g the privacy protection function. The new output
o is defined as follows (cf. figure 1, CFNG2):

o = g(π(fr(u), r)), u = UG(), r = Pre()

The extended construction still outputs unique
numbers, which is shown by the following corollary.

Corollary 2.1 Let u be a globally unique number,
fr be an injective function and r ∈ R. Further-
more, let π be a static bit-permutation function or
bit-permuted expansion function and g an injective
one-way function. Then o = g(π(fr(u), r)) is glob-
ally unique, for all r ∈ R.

Proof. Let o′ = g(π(fr′(u′), r′)) with u 6= u′. By
theorem 2.1 π(fr(u), r) 6= π(fr′(u′), r′). Since g is
injective, o 6= o′ for all r, r′ ∈ R.

If fr and g are chosen carefully, then o preserves the
privacy, i.e. UI cannot be efficiently obtained from
o. For particular applications it might be necessary,
that only r and not π(fr(u), r) is hidden by g. To
provide more flexibility we use τ(r) as input for
g, where τ is a static bit-permutation function or
bit-permuted expansion function. This leads to the
following alternative (cf. figure 1, CFNG3):

o = π(fr(u), g(τ(r))), u = UG(), r = Pre()

The following corollary shows the uniqueness of o.

Corollary 2.2 Let u be a globally unique number,
fr be an injective function and r ∈ R. Furthermore,
let π and τ be static bit-permutation functions or
bit-permuted expansion functions and g an injec-
tive one-way function. Then o = π(fr(u), g(τ(r)))
is globally unique, for all r ∈ R.

Proof. Let o′ = π(fr′(u′), g(τ(r′))) with u 6= u′.
If r = r′ (resp. r 6= r′) then g(τ(r)) = g(τ(r′))
(resp. g(τ(r)) 6= g(τ(r′))) by the injectivity of g ◦ τ .
Hence, theorem 2.1 can be applied through replac-
ing r by g(τ(r)) and so o 6= o′ for all r, r′ ∈ R.

The disadvantage of this approach is that in general
the length of o is larger than in the previous con-
struction. Moreover, even if o 6= o′ one can detect if
r = r′ by the injectivity of g ◦ τ . In such a case the
holder of r′ (resp. r) can invert fr (resp. fr′). On
the contrary, applying g only to r might be useful
for scenarios where the issuer has to prove that o
has a specific form.

Remark 2.1 Attention needs to be drawn on how
g and fr are instantiated. Since the inputs for both
have a special structure, it has to be verified if the
security provided by the functions is still preserved.

3 A Practical Approach

For the generation of UUIDs, we require the bit-
length to be as short as possible without violating
the defined requirements. CFNG1 is not very useful
here (if r is sufficient to invert fr) since UUIDs are
public. CFNG2 outputs shorter blocks than CFNG3.
Hence, we decided to use CFNG2. In the current
implementation we use the existing MAC-address
as the unique identifier UI (similar to algorithm 1
in the UUID-standard). In the following we pro-
pose an approach, where g is based on the ellip-
tic curve discrete logarithm problem [21] to provide
short output-lengths. For fr ciphertext stealing [20]
based on the SKIPJACK algorithm [3] is used.

3.1 Basic Tools

Elliptic Curve Cryptography (ECC): We as-
sume that the reader is familiar with ECC (cf. [16]).

Definition 3.1 Let E(Zp) be an elliptic curve
group, where p is an odd prime. Let P ∈ E(Zp) be
a point of prime order q, where q|#E(Zp). The El-
liptic Curve Discrete Logarithm Problem (ECDLP)
is the following: Given a (random) point Q ∈ 〈P 〉
and P , find k ∈ Zq such that Q = kP .

By SM(k, P) we henceforth denote the scalar mul-
tiplication kP in E(Zp). It is believed that the
ECDLP using lp ≈ lq ≈ 160 is secure against pow-
erful attacks like Pollard’s rho algorithm [16].

Point Compression [4]: A point on an elliptic
curve consists of two coordinates and so requires 2lp
bits of space. It is clear that for every x-value there
exist at most two possible y-values. Since they only
differ in the algebraic sign, it suffices to store only
one bit instead of the whole y-value. A point (x, y)
can hence be stored as x||b, where b = y MOD 2,
and then only requires lp + 1 bits of space.

Ciphertext Stealing: Let lB be the block-length
of a symmetric encryption function E. Let u be a
plaintext, where lB < lu ≤ 2lB. If u is encrypted
straight-forwardly by padding u up to 2lB bits and
then encrypting two blocks, the length of the corre-
sponding ciphertext c is lc = 2lB. Using ciphertext
stealing [20], c can be generated such that lc = lu.
This works as follows: First u is cut into the blocks
u1 and u2, where lu1

= lB and lu2
= lu − lB. Then

u1 is encrypted by use of E and a properly chosen
key r resulting in a block c1||c2, where lc1

= lu− lB
and lc2

= lB − lc1
. Then the block c2||u2 is en-

crypted by use of E and the same key r resulting
in the block c3. This works, since lc2

+ lu2
= lB.

The ciphertext of u is then c1||c3 and contains suf-
ficient information to compute u, if r is available.
The length of c is lc = lc1

+ lc3
= lu. An example

for a 64-bit block cipher can be found in figure 2.

3.2 Implementation

In the implementation shown in figure 2 we use the
ECDLP and the point compression technique for
the design of g. To obtain an output of 160 bit,
we require lp = lq = 159, since 1 bit is needed to
represent the y-value. We define g as follows:

g : Z
∗

q → Zp × {0, 1}, [oπ] 7→ [x, b]

where (x, y) := SM(oπ, P) and b := y MOD 2.
Hence, oπ = π(fr(u), r) has to be an element of
Z
∗

q . Since u is not random, we require lr = 80 to

CFNG2

UG Pre

f gπ

r

rr

u

u

of

of oπ

oπ
oπ

UUID

sy
s-

p
a
ra

m
s

u1 u2u2

c1c1

c2

c2 c3

E E

ci
p
h
er

te
x
t

st
ea

li
n
g

UUID

b MOD 2x

x y

PSM64

641515 49

49

79

79 80

159

159

159 159

159

1515

160

1

Figure 2: An Efficient Implementation

make brute-force attacks hard. To remain within
a block of 159 bits, the output of fr must be at
most 79 bits. Since lUI = 48, the counter can be at
most 31 bits. Moreover, a verification is required
to find out if oπ ∈ Z∗

q (this can be omitted if fr

outputs 78 bits, but then the counter has 30 bits).
For efficiency reasons, we use a block-cipher for fr.
The SKIPJACK-algorithm (SA) [3] provides a key-
length of 80 bits, which is useful, since we require
lr = 80. The SA operates on 64-bit blocks and
thus we apply the technique of ciphertext stealing
to encrypt u. We therefor set lB = 64, lu = 79 and
hence get lu1

= 64, lu2
= lc1

= 15 and lc2
= 49.

If oπ /∈ Z
∗

q then r is incremented modulo 280 (to
avoid an overflow) and the encryption process is
applied to u again. After k runs of this procedure
the probability for oπ < q is 1/2k.

3.3 Analysis

Uniqueness: The implementation is an instance of
CFNG2 and so uniqueness is guaranteed by corol-
lary 2.1 if UG produces unique output. In the pro-
posed implementation lcnt = 31 and cnt is initial-
ized by a random number. Thus cnt can be in-
cremented modulo 231 for 231 − 1 times without
violating the uniqueness property.

Efficiency: No communication with third par-
ties is necessary apart from the initialization pro-
cess. The used ciphertext stealing requires two runs
of the SA in every round. Scalar multiplication
in E(Zp) is efficient, since computations are per-
formed in Zp, where p is only 159 bits long. Some-
times the generation process needs to be repeated,
because it can happen that oπ /∈ Z∗

q . In this case,
the process has to be repeated until oπ ∈ Z∗

q (by
use of a new r). If we want to omit such a loop,
we have to ensure that loπ

= lq − 1, which can be
achieved by using a shorter counter. The length
of a UUID is as short as possible, namely 160 bits
(current security level). In general, UUIDs of lower
length can be generated as well by some slight mod-

ifications, but then, either (strong) privacy cannot
be guaranteed anymore, or a system-wide master
secret has to be used (which we want to avoid).

Privacy (Hiding): The goal of an attack against
the hiding property is to obtain UI, i.e. here the
permanent 48-bit MAC-address. To obtain UI, the
block u has to be found and then the counter re-
moved. Therefore, oπ has to be accessible. If oπ

looks sufficiently random, then the best known at-
tack is Pollard’s rho algorithm with a running time
of O(

√

q/2), here ≈ 280. Since we use a block ci-
pher for fr, a sequence of blocks of the form fr(u)
appears random for a random r. Intuitively, the
concatenation of the bits of a random number (here
r) and a number that appears randomly (here of)
results in a block which in-all appears randomly
(here oπ). Since this is only a conjecture, we per-
formed statistical tests over a generated sequence
of 50 MB (generated by the described algorithm)
using the NIST test suite [5]. The results are quite
satisfying. A different attack could be that the
attacker guesses that a specific MAC-address has
been used. But then he has to mount a brute force
attack to find of such that the given UUID equals
to g(π(fr(u), r)). Since lr = 80, this attack is in-
feasible for a poly-bounded algorithm. Another ap-
proach could be to partially invert g to obtain the
80 bits of r. So far, no algorithm is known that
achieves this attack goal. Intuitively, if an algo-
rithm can obtain any selected bit, then it can find
all bits and hence break the ECDLP.

Privacy (Unlinkability): Let o and o′ be two
UUIDs generated by the same generator. Then,
the corresponding unique values u and u′ at least
differ in 1 bit. Since fr is a mixing-transformation,
changing 1 bit of the input results in lof

/2 bit-flips
on average for the output of . Furthermore, r is cho-
sen independently in every run and so half of the
bits will be different on average. Hence, in total, o
and o′ differ in approximately one half of the bits.
By the hiding property UI cannot be efficiently ob-
tained from o or o′.

3.4 Extending the UUID-Standard

In the RFC 4122, UUIDs have been specified for
a length of 128 bits. It is obvious, that we hardly
achieve such a short block-length while fulfilling all
the requirements stated in section 2. Based on our
proposal the following two versions could be taken
into account in the RFC 4122.

Identity-Based Short-Term Privacy: If the
privacy of the generated UUIDs only needs to hold
for a short period of time (for instance some days)
then we suggest to modify our implementation such
that lo = 128. For instance, if lu = 64 one can use
the DES encryption algorithm for f , and then set
o = SM(π(DES(u, r), r), P), where lq = lp = 128
(here r would not contain parity-bits). Pollard’s
rho algorithm then has a running time of approxi-
mately 264 steps, which is sufficient for a short time.

Identity-Based Long-Term Privacy: If privacy
needs to hold for a long time (several years), we
suggest to use an implementation like the one given
in section 3. Then, however, additional lengths for
UUIDs need to be specified in the RFC 4122.

4 Further Applications

In this section we exemplarily go through several
further applications where the avoidance of colli-
sions is intrinsic. Some of the applications are of
current practical relevance, others can be interest-
ing in the future. Henceforth, let Gq be a cyclic
multiplicative group of prime order q, where the
discrete logarithm problem (and related problems)
are believed to be hard. Moreover, let g ∈ Gq \{1}.

4.1 Key Generation Algorithms

Key generation is based on (pseudo-)random num-
ber generators and hence collisions can occur. A
collision can be dangerous if it is publicly de-
tectable. In the context of private key cryptosys-
tems this plays a role for remote controls contained
in car-keys, for instance. In the following we discuss
key-collisions in public key cryptosystems.

Discrete-Log based Cryptosystems: Several
discrete-log (DL) based cryptosystems such as El-
Gamal encryption [13] use public keys of the form
e = gd, where d ∈R Zq. For two given public keys e
and e′ the equality e = e′ implies d = d′. Hence, the
holder of d′ can decrypt messages encrypted with
e. Other DL-based schemes which are affected by
a similar problem include [1, 11, 26]. This can be
overcome, if DLs are generated by a proper CFNG.

RSA-based Cryptosystems: For cryptosystems
that are based on the RSA-assumption [24], the
following must not happen for two moduli n = pq,
n′ = p′q′, where p, q, p′, q′ are (safe) primes:

1. Common Prime Attack: If either p or q equals
to p′ or q′ then the holder of n′ can factor n.

2. Common Modulus Attack [12]: If n = n′ then
w.l.o.g. p = p′ and q = q′. Hence, the holder of
n′ can factor n.

By the fundamental theorem of arithmetic, ev-
ery natural number can be written as a product
of prime-powers whose representation is unique.
Hence, these attacks can be avoided if a substring
(at fixed bit-positions) of each prime factor is cho-
sen by an appropriate CFNG.

4.2 Probabilistic Encryption

A goal in the design of probabilistic public key
schemes is providing indistinguishability of cipher-
texts [15]: Given two ciphertexts c1 = E(m1, e)
and c2 = E(m2, e) and the plaintext mb, one must
not be able to efficiently decide if b = 1 or b = 2.
However, some schemes, such as ElGamal encryp-
tion, have the property that one can publicly de-
tect, if two randomizers of different ciphertexts
are equal, and then obtain partial or total infor-
mation about the corresponding plaintexts: Let
(A, B) = (gr, mer) and (A′, B′) = (gr′

, m′er′

) be
two ciphertexts. From A′ = A it follows that r′ = r
and hence B′B−1 = m′m−1. If the message space
is small, m and m′ may then be found efficiently.
In the ElGamal signature scheme two colliding ran-
domizers result in a much bigger problem: The se-
cret key can be extracted. This problem also hap-
pens for several interactive proofs that are turned
into signature schemes (cf. end of next section).

4.3 Interactive Proofs of Knowledge

Beside other properties, an interactive protocol is a
proof of knowledge, if a so-called knowledge extrac-
tor (KE) can be given [9]. Such a KE informally
works as follows: If a prover sends the same first
message twice and correctly responds to two differ-
ent challenges, then the secret information must be
efficiently extractable. Obviously, in real protocol
runs such a situation must not happen, otherwise
a dishonest verifier can extract the secret. Con-
sider Schnorr’s proof of knowledge for instance: A
prover wants to convince a verifier that he knows
x ∈ Zq for a given y = gx. First he chooses
r ∈R Zq and sends t = gr to the verifier who re-
turns a random challenge c ∈ Zq. The prover re-

sponds s = (r − cx) MOD q and finally the verifier
checks if t = ycgs holds. The KE for this proof
is the following: Given the transcripts (t, c, s) and
(t′, c′, s′) of two rounds, where t = t′, c 6= c′ and
s 6= s′, the secret x can be obtained by computing
(s − s′)(c′ − c)−1 in Zq. Hence, if the prover acci-
dentally selects r = r′ in any two runs of Schnorr’s
proof, the protocol-transcripts can be used to ex-
tract x. This problem can be overcome by generat-
ing r using a CFNG. The KE can still be given for
the proof, but the extraction in practice is avoided.
Notice, that the above stated problems also effect
interactive proofs that are turned into a digital sig-
nature scheme using the techniques in [14].

4.4 Untraceable Devices

An application of a CFNG in this context can
be the generation of temporary identifiers for the
unique identification of RFID-tags. Since the gen-
erated identifiers are temporary, the RFID-tag is
then not traceable anymore (if R3 is fulfilled).

4.5 Digital Pseudonyms

Digital pseudonyms are useful to protect one’s pri-
vacy. The more ’fresh’ (independent) pseudonyms
are used (e.g. transaction pseudonyms) the lower
is the linkability of different sessions of the same
user. A core requirement is, that each pseudonym
is globally unique [22]. This can be be achieved if
a CFNG is involved (preferably type 2 or 3). Our
identity-based approach might be utilized to pro-
vide optional anonymity revocation and linkability.

5 Future Prospects

An open problem is to instance our general con-
struction by functions, where the privacy protection
can be provably reduced to an intractable problem.
So far, we have only been able to partly perform
such reductions and hence had to perform statisti-
cal tests additionally.

Acknowledgements: The authors would like to
thank Patrick Horster for his useful comments.

References

[1] FIPS-pub 186: Digital signature standard, 1994.

[2] FIPS-pub 180-1: Secure hash standard, 1995.

[3] NIST: SKIPJACK and KEA Alg. Spec., 1998.

[4] IEEE Std 1363-2000: IEEE Standard Specifica-
tions for Public-Key Cryptography, 2000.

[5] FIPS-pub 800-22: A statistical test suite for ran-
dom and pseudorandom number generators for
cryptographic applications, 2001.

[6] PriorArtDatbase, IPCOM#000007118D, 2002.

[7] ITU-T X.667: Generation and registration of Uni-
versally Unique Identifiers (UUIDs) and their use
as ASN.1 object identifier components, 2004.

[8] ISO/IEC 9834-8: Generation and registration of
Universally Unique Identifiers (UUIDs) and their
use as ASN.1 Object Identifier components, 2005.

[9] M. Bellare, O. Goldreich. On defining proofs of
knowledge. LNCS 740:390–420, 1993.

[10] C. Shannon. Communication theory of secrecy sys-
tems. Bell Syst. Tech. Journ, 28(4):656–715, 1949.

[11] R. Cramer, V. Shoup. A practical public key cryp-
tosystem provably secure against adaptive chosen
ciphertext attack. LNCS 1462:13–25, 1998.

[12] J. DeLaurentis. A further weakness in the common
modulus protocols for the RSA cryptoalgorithm.
Cryptologia, 8:253–259, 1982.

[13] T. ElGamal. A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. LNCS
196:10–18, 1985.

[14] A. Fiat, A. Shamir. How to prove yourself: Practi-
cal solutions to identification and signature prob-
lems. LNCS 263:186–194, 1987.

[15] S. Goldwasser, S. Micali. Probabilistic Encryption.
J. of Comp. and Syst. Scien. 28(2):270–299, 1984.

[16] D. Hankerson, A. Menezes, S. Vanstone. Guide to
Elliptic Curve Cryptography. Springer, 2004.

[17] P. Horster. Dublettenfreie Schlüsselgenerierung
durch isoliert Instanzen. In Chipkarten, p. 104–
119, Vieweg-Verlang, 1998.

[18] P. Leach, M. Mealling, R. Salz. A Universally
Unique IDentifier (UUID) URN Namespace. Re-
quest for Comments (RFC) 4122, 2005.

[19] A. Menezes, P. van Oorschot, S. Vanstone. Hand-
book of applied cryptography. CRC Press, 1996.

[20] C. Meyer, S. Matyas. Cryptography: A new di-
mension in computer data security. John Wiley &
Sons, pages 77–85, 1982.

[21] V. Miller. Use of elliptic curves in cryptography.
LNCS 218:417–426, 1986.

[22] A. Pfitzmann, M. Köhntopp. Anonymity, Unob-
servability, and Pseudonymity – A Proposal for
Terminology. LNCS 2009:1–9, 2001.

[23] R. Rivest. The MD5 Message-Digest Algorithm.
Request for Comments (RFC) 1321, 1992.

[24] R. Rivest, A. Shamir, L. Adelman. A method for
obtaining digital signatures and public-key cryp-
tosystems. Comm. ACM 21(2):120–126, 1978.

[25] P. Schartner. Security Tokens. IT-Verlag, 2001.

[26] C.-P. Schnorr. Efficient signature generation by
smart cards. J. Cryptology, 4(3):161–174, 1991.

