
Secure Internet Phone⋆

Update: 2005/07/15

Patrick Horster, Martin Schaffer, Peter Schartner, and Dieter Sommer

University of Klagenfurt, Austria
Computer Science · System Security

www.syssec.at

Abstract. This paper describes the design and implementation of a se-
cure internet phone utilizing a smartcard-based public key infrastructure.
First, available hardware and software based systems are discussed fol-
lowed by a description of the architecture of our system. More detailed
information on the public key infrastructure including the certification
authority, the client and the public key server are to come in chapters
thereafter. The article finishes with a concise description of the audio
subsystem.

1 Introduction

The curriculum of the studies in ”Angewandte Informatik” (Applied Computer
Science) requires a small project to be carried out in order to gain hands-on
experience of how software development works. As in real life and in order to
experience a true project feeling, the project should be done by at least two
people. Because we started specializing in security, we decided to carry out our
project in this field. We found the first lack of security in Internet communica-
tion systems while we were playing games that use voice communication over
networks. After analyzing several other communication systems, the idea of the
”Secure Internet Phone” (SIP) was born. The aims our SIP-design set out to
achieve were as follows:

– authenticity of the involved users (calling and receiving party),
– confidentiality and integrity of the call data and protocol data,
– required bandwidth ≤ 8 kByte/s,
– low speech delay, and
– use of smart cards to store vital security information.

2 Overview of existing systems

2.1 Hardware Systems

Various companies such as AT&T or Motorola offer hardware solutions for secure
telephony which are unfortunately quite expensive. In general only poor informa-
tion about security mechanisms can be found. Trust is placed almost entirely in

⋆ Originally published in the Proceedings of IFIP TC6/TC11 CMS’01.

either the manufacturer or in the designer (usually the National Security Agency
(NSA)). Predominantly two standards are used, namely the Secure Telephone
Unit Type III (STU-III) [16, 11] and the Secure Terminal Equipment (STE) [15].
Both of them use hardware security tokens (Crypto Ignition Key (CIK) [16] or
Fortezza Plus KRYPTON Card [14] respectively) to enhance security. The CIK
is a storage device for key data and not capable of performing cryptographic
operations; in contrast, the Fortezza Plus KRYPTON Card contains the whole
cryptographic unit. STU-III devices provide a back door for the NSA [17]; more-
over, the non-government and export versions are weakened. All Fortezza Cards
contain the well known Capstone Chip [2] implementing Key Escrow [5].

Summing up, it can be said that these hardware phone devices are not suit-
able for private use because of the high prices, and questionable for commercial
use because of the NSA’s back door.

2.2 Software Systems

Secure software telephony systems are programs running on common operating
systems such as Windows or UNIX and standard hardware providing secure
voice communication over telephone lines or the Internet. Only a fraction of the
Internet phone programs support cryptographic mechanisms such as encryption,
authentication or use of a public key infrastructure. The following three systems
are commonly referenced on security related pages on the Web:

– Speek Freely uses the Web of Trust of the PGP-program to negotiate a ses-
sion key. The available encryption algorithms are DES, Blowfish and IDEA.

– The Nautilus Secure Phone offers Diffie-Hellman key agreement with a sub-
sequent verbal comparison of the hash value of the agreed session key in
order to prevent the system from being compromised by the ”man in the
middle” attack. Three algorithms, namely Triple-DES, Blowfish and IDEA
are supported for voice encryption. A drawback of this system is the lack of
full duplex audio capability.

– PGPfone - a widespread system - uses the same mechanism for key agreement
as the Nautilus Secure Phone. The offered encryption algorithms are Triple-
DES, CAST and Blowfish. Unlike the Nautilus Secure Phone it does support
full duplex audio connections.

The products using Diffie-Hellman do not offer authentication; Speek Freely on
the other hand does so by using PGP’s Web of Trust [8] concept. None of the
above systems support the use of security tokens such as smartcards; moreover,
no public key infrastructure (PKI) with a trusted party is used.

3 Public Key Infrastructure

To achieve mutual authenticity of caller and callee we designed a public key
infrastructure based on hardware security tokens (smartcards) and public key
certificates. The core component of the PKI is the certification authority (CA)

2

whose task it is to register the public key server (S) and the users by generating
their keys and certifying them. We used RSA [10] with 1024 bit moduli for public
key encryption and digital signatures. In order to prevent the digital signature
mechanism from existential forgery there was a need for a cryptographically
secure hash function - the RIPEMD-160 [3] algorithm seemed to be appropriate.
In the implementation of our system we used the ASECrypto Cryptographic
Library [1] which provides software implementations of the algorithms and the
interface to smartcards. For symmetric encryption we integrated IBM’s reference
implementation of the AES finalist MARS [7]. However, the source code can
easily be replaced by Rijndael - the winner of the AES competition.

Client A

Certification Authority (CA) Public Key Server (S)

SKCA VKCA
SKS VKS

DKS EKS

online authentic

key distribution

DKA EKA
SKA VKA

cert[EKS]

cert[VKS]
VKCA

A

server registration

DKS, EKS,
SKS, VKS,
VKCA

user registration
cert[EKA],

cert[VKA]

Fig. 1. Public key infrastructure

The distribution of the public keys in our system is done by a public key
server. That means users do not get certificates except that of the public key
server, but authentic public keys delivered by the server. The reason why we
chose this key distribution mechanism is because due to its centrality it enables
the easy and instant revocation of certificates. However, certificates could be
made available to users by a public directory which would render the Public
Key Server obsolete, i.e. it would be degraded to a simple address directory
server.

3.1 Certification Authority

The Certification Authority is the center of trust and must be run offline in a
highly secure environment. When initializing the SIP infrastructure the public
key server is the first instance to be registered at the CA. In this process the
Server receives two key pairs, namely (EKS , DKS), (SKS, V KS) and V KCA.

In the registration process of a user A the two key pairs (EKA, DKA)
and (SKA, V KA) are generated and stored together with V KCA, cert[EKS],

3

cert[V KS] and idA on A’s smartcard. Further, the certificates containing the
user’s public keys (cert[EKA] and cert[V KA]) are transferred to the public key
server. Thus, each registered user is able to verify public key certificates with
V KCA and mutual authentication becomes possible.

We designed simple certificates shown in figure 6 (a). Our certificates are
identified by a unique id. The most important components are of course the
user name, user id and the public key blob because the task of certificates is
to bind a key to a user. This is achieved through the signature of a hash of
the certificate data. Via the element ”key type” we can identify whether the
contained key is the user’s encryption or signature verification key. The public
key is embedded as a so called key blob used by the ASECrypto Cryptographic
Library [1]. The issuing date and the validity is necessary to prevent usage of
outdated certificates.

EKX RSA 1024 bit key of X for encryption (public)

DKX RSA 1024 bit key of X for decryption (private)

VKX RSA 1024 bit key of X for signature verification (public)

SKX RSA 1024 bit key of X for signature generation (private)

cert[EKX] public key certificate of X for EKX signed by the CA with SKCA

cert[VKX] public key certificate of X for VKX signed by the CA with SKCA

idX unique identifier of X

skX/Y symmetric session key between X and Y for encryption and decryption

mkX/Y symmetric session key between X and Y for MAC generation and verification

E(m, EKX) encryption of message m with EKX

D(m, DKX) decryption of message m with DKX

S(m, SKX) signature generation of hash of m with SKX

V(sm, VKX) signature verification of sm = (m, S(m, SKX))

req(X) request for public keys EKX and VKX and addrX

addrX network address of X

Fig. 2. Acronyms used throughout the article

3.2 Client

After the user has been registered at the certification authority he/she can use
any phone client of the system by using the received smartcard. When start-
ing the client program an authentication process between A and the public key
server takes place in which skA/S , mkA/S and the respective initialization vec-
tors are established. These keys and initialization vectors are used for protecting
subsequent protocol communication between client A and the Public Key Server
which we will refer to as secure protocol connection (SPC) because protocols can
be run encrypted and integrity protected (see section 5). A client uses an estab-
lished SPC for getting the network addresses and public keys of the interlocutor
when placing a phone call or being called.

4

3.3 Public Key Server

The public key server always has to remain online to allow registered users to
place phone calls. After a couple of user registrations the newly created user
certificates are transferred to the Public Key Server (offline transmission) which
stores them on its hard disk. When a client authenticates to the public key
server, its public keys will be extracted from the certificates into main memory.
Furthermore, network addresses and other user specific information will be kept
there. Such data are necessary for authentication processes between two clients
and can be transferred to clients over the SPC on request.

4 Authentication

First of all the authentication method we used in our system should be described
in order to understand the authentication process between two instances (client-
server and client-client) as detailed below. We decided to implement a slightly
modified X.509 [6] protocol because it provides strong entity authentication and
is based on our public key infrastructure. The X.509 standard defines two-pass
and three-pass protocols. Using the two-pass protocol would have required syn-
chronized clocks because time-stamps are used for replay detection. This can be
avoided by using the three-pass protocol which makes use of nonces to guar-
antee the freshness of the protocol messages. In the SIP-design the three-pass
protocol seemed to be more appropriate (see Figure 3) since it does not rely on
synchronized clocks.

authentic keys: EKB and VKB

m1 = (rA, idB, E(dataA, EKB))

creating message 1

Instance A

authentic keys: EKA and VKA

? V(sm1, VKA) == true

dataA = D(E(dataA, EKB), DKB)

Instance B

sm1 = (m1, S(m1, SKA))

m2 = (r'A, rB, idA, E(dataB, EKA))
sm2 = (m2, S(m2, SKB))

? V(sm2, VKB) == true

dataB = D(E(dataB, EKA), DKA)

? rA == r'A

m3 = (r'B, idB, E(data'A, EKB))
sm3 = (m3, S(m3, SKA))

? V(sm3, VKA) == true

data'A = D(E(data'A, EKB), DKB)

? rB == r'B

processing message 2

creating message 3

processing message 1

creating message 2

processing message 3

Fig. 3. X.509 three-pass authentication

Before the authentication protocol can be run, the public keys of the respec-
tive other party must be made available. An instance A has to start the protocol
by transmitting message m1 signed with SKA. This message contains a nonce

5

rA, the user id of B (idB) and an encrypted portion of data which will be de-
scribed in the next paragraph. After having received sm1, instance B verifies
the signature of m1 and in case of success, the contained encrypted data can
be decrypted using DKB. In order to authenticate to A, B has to embed the
received nonce rA into m2 as r′A. Moreover, B has to include its own nonce rB ,
so that A can authenticate to B in the last step of the protocol. The processing
of m2 is analogous to that of m1. However, A has to check, whether the received
r′A is equal to the sent rA. If equality holds, B has authenticated to A. The
generation of m3 is similar to m2, with one difference: only the received nonce
rB will be sent as r′B. After having checked the validity of the signature of m3

and the equality of rB and r′B , A has authenticated to B. Thus, the protocol
has finished successfully.

The encrypted data of m1 and m2 contain partial session keys and initial-
ization vectors. These keys will be combined to the final symmetric session key
skA/B on both instances. In comparison, the encrypted data of m3 contains the
MAC session key mkA/B and it’s initialization vector. The structure of an X.509
message is detailed in figure 6 (b). Header 1 distinguishes between X.509 and
SPC messages on the server side.

4.1 Authentication between client and public key server

Here, client A and the public key server need the public keys of the respective
other party as required in the general description of the authentication protocol.
The client extracts EKS and V KS from the certificates stored on it’s smartcard
after having checked the validity of the certificates with V KCA. In order to verify
the signature of m1 sent by A, the public key server has to extract A’s public
keys from the certificates stored on hard disk. Thus, the authentication protocol
can proceed as described above.

Furthermore, the public key server stores the network address of A to make
it available for other clients. Some additional data, like user id and name, will
be kept in main memory, too. After having finished the authentication process,
client A and the Server share a symmetric session key skA/S , a MAC key mkA/S

and the related initialisation vectors. These data units are the fundamental ele-
ments of the SPC that has been established between A and the public key server
within the framework of the authentication.

4.2 Authentication between two clients

The authentication between two clients is an integral part in the process of
establishing a phone call. The requirements of authentication between two clients
is the fact that caller and callee have both authenticated to the public key server
(gone online). In the SIP infrastructure every caller has to know the callee’s
user id which acts as the ”phone number”. The distribution of phone numbers
could be performed by public web directories, which are not currently designed or
implemented. Caller A now requests the public keys EKB and V KB and network
address addrB of callee B (see message req(B) in figure 5). After having received

6

Client A

message 1

Public Key Server

 sm1 = (m1, S(m1, SKA))

message 2 sm2 = (m2, S(m2, SKS))

message 3 sm3 = (m3, S(m3, SKA))

EKA, VKA, IPA, PortA, ...

main memory

EKB, VKB, IPB, PortB, ...

···
hard disk

cert[EKA], cert[VKA]

cert[EKB], cert[VKB]

···

DKA EKA
SKA VKA

cert[EKS]
cert[VKS]

VKCA

A

Fig. 4. Authentication between client and public key server

the requested data via the SPC, A initiates the X.509 three-pass protocol by
sending sm1 to B. However, B neither can verify the signature of m1, nor can it
decrypt the data embedded in m1, because B does not have A’s public keys. So,
B has to request the public keys EKA and V KA of A over the SPC between the
public key server and itself. After the verification of m1’s signature the protocol
can proceed as described in the general description of the authentication.

Once authentication has finished the two clients possess the session key skA/B

and an initialization vector for the CBC mode of operation of the MARS cipher
for audio encryption. Furthermore, A and B hold a MAC key mkA/B and the
related initialization vector which are used for integrity protection of the audio
data. Now the audio data can be transmitted in a secure, integrity-protected
and authentic manner. More details about the audio subsystem can be found in
section 6.

Client A Client B

sm3 = (m3, S(m3, SKA))

(EKB, VKB, addrB)

req(B)

sm2 = (m2, S(m2, SKB))

sm1 = (m1, S(m1, SKA))

Public Key Server

request

req(A)
(EK

A, VK
A, addrA)

DKA EKA
SKA VKA

cert[EKS]

cert[VKS]

VKCA

A

 message 1

message 3

message 2

request

DKB EKB
SKB VKB

cert[EKS]

cert[VKS]

VKCA

B

reply

reply

Fig. 5. Authentication between two clients

7

5 Secure Protocol Connection

The SPC can be considered as an encrypting, integrity-protecting and authenticity-
guaranteeing protocol which is used for all subsequent client-server communica-
tions. Whenever a client goes online, a new SPC between this client and the
public key server is established by exchanging the keys and initialization vectors
needed within the authentication.

The communication over the SPC is realized by the use of SPC messages
(cf. figure 6 (c)). Header 1 is used to distinguish respectively between an SPC
message and an X.509 message on the server side. In the case of an SPC message,
header 2 identifies the type of protocol being run over SPC (cf. figure 7).

header 1

message size

version

protocol 1 id

user id

e

n

c

r

y

p

t

e

d

protocol 2 id

counter

reserved

data

header 2

MAC

16

16

k*16

16

SPC message

header 1

e

n

c

r

y

p

t

e

d

data 1

header 2

signature of hash 2

h

a

s

h

2
12

8

X.509 message

data 2

48

nonce (A)

user id (B)

user name (B)

reserved

16

counter

session

key part
hash 1

user id (A)

data

user name (A)

reserved

4

8

4

4

4

40

4

4

4

40

4

4

4

28

2

4
12

8

certificate

h

a

s

h

message size

version

protocol id

user id (A)

80

12

8

(a) (b) (c)

version

reserved

certificate id

algorithm id

key type

issuer

issuing date

valid from

valid to

user name

user id

public key size

reserved (FFh)

public key

signature size

signature of hash

Fig. 6. (a) certificate, (b) X.509 message, (c) SPC message

incoming

protocol message
SPC message

X.509 message

sign on

request public keys and address

sign off

···

···

receiving message branch on subsequent protocolbranch on message type

message 1

message 3

···

···

···

Fig. 7. Protocol handling of the public key server

6 Audio Processing Subsystem

The symmetric keys (skA/B and mkA/B) that have been established during the
authentication process between A and B are now used for the secure audio

8

communication. The callee B initializes its audio subsystem and starts audio
recording. When the first audio block has been recorded, it is processed and
transmitted to A. On receiving the first packet, A initializes its audio subsys-
tem and starts audio recording and playback. B initializes the audio playback
after having received the first packet from A. In this full duplex stream of au-
dio packets, protocol data can be embedded, which at present is only used for
terminating the phone connection.

PCM audio

stream

PCM audio

block

unencrypted

message block

integrity protected,

encrypted

message block

GSM frame
encrypted

message block
Internet

buffering

(RAM)

audio

compressio

n (GSM

6.10)

encryption

(MARS)

MAC

generation
transmitting

adding

protocol

data and

padding

analog to

digital

conversion

Constructing an audio packet

digital to

analog

conversion

buffering

(RAM)

audio de-

compressio

n

(GSM 6.10)

decryption

(MARS)

MAC

verification
receiving

processing

protocol

data

Processing a received audio packet

Fig. 8. The audio subsystem

Every data packet sent over the network must be processed as shown in the
upper part of figure 8. Digitized audio data, sampled at 11025 Hz, is compressed
block-by-block (160 16 bit samples per block) by the GSM 6.10 algorithm [4]
to 33 byte blocks. After attaching protocol data and padding, the message is
encrypted using MARS (key: skA/B) in CBC mode. Note that compression is
done before encryption for two reasons: first, encrypted audio data could not
be compressed any further and second, security is increased by encrypting data
containing very little redundancy. In the next step a MAC, also produced by
MARS in CBC mode (key: mkA/B), is generated and added. Now the packet
can be passed to the network.

Every received audio packet is processed as shown in the lower part of figure
8. The steps are the respective ”inverse” steps from construction of an audio
packet.

7 Conclusion

Considering the aims for the SIP stated in section 1, it can be seen that all of
them have been realized:

– Authenticity is achieved through the public key infrastructure.
– Confidentiality and integrity of the call data and protocol data is guaranteed

by the use of symmetric encryption and MAC generation.

9

– GSM 6.10 audio compression cuts the data rate down to a sub-ISDN band-
width.

– The use of small audio blocks and the full exploitation of Windows’ audio
capabilities minimize speech delay.

– The use of smartcards further enhances security of the public key infrastruc-
ture by storing vital keys in a tamper-proof manner.

References

1. FAST Software Security GmbH & Co. KG. ASECrypto Cryptographic Library
for 32-bit Windows. Application Programmers Guide and API-Reference, Version
1.3, Mrz 1998, Germering, 1998.

2. D.E. Denning. Description of Key Escrow Systems
(http://www.cosc.georgetown.edu/ denning/crypto/Appendix.html).

3. H. Dobbertin, A. Bosselaers, B. Preneel. RIPEMD-160 - A strengthened version
of RIPEMD, st Software Encryption - Cambridge Workshop, Md. 1039, Springer-
Verlag, Berlin, S.71-82, 1996.

4. Audio compression algorithm GSM-6.10 source code. (http://kbs.cs.tu-
berlin.de/ jutta/toast.html)

5. Escrowed Encryption Standard. FIPS PUB 185, 1994.
6. A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography,

CRC Press, 1999.
7. C. Burwick et al. MARS - a candidate cipher for AES, IBM Corporation, 1999.
8. Network Associates, Inc. An Introduction to Cryptography, 1999.
9. Nautilus Secure Phone (http://www.lila.com/nautilus/).

10. R.L. Rivest, A. Shamir, L.A. Adleman. A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, Vol.21, Nr.2, S.120-
126, 1978.

11. B. Schneier. Applied Cryptography, John Wiley & Sons, 1996.
12. Microsoft Corporation. Microsoft Platform SDK, Juli 2000 Edition, Redmond,

2000.
13. Speek Freely (http://www.fourmilab.ch/netfone/windows/doc/pgp.html).
14. Spyrus Inc. Fortezza Crypto Card - Technical Specification

(http://www.spyrus.com/content/products/legacy/fortezza/).
15. https://infosec.navy.mil/PRODUCTS/SECUREVOICE/stu3.html
16. Dept. of Defense Security Institute. STU-III Handbook for Industry, 1997.
17. P.R. Zimmermann. PGPfone - Owner’s Manual, 1996.

10

